Forbehandling af biomasse

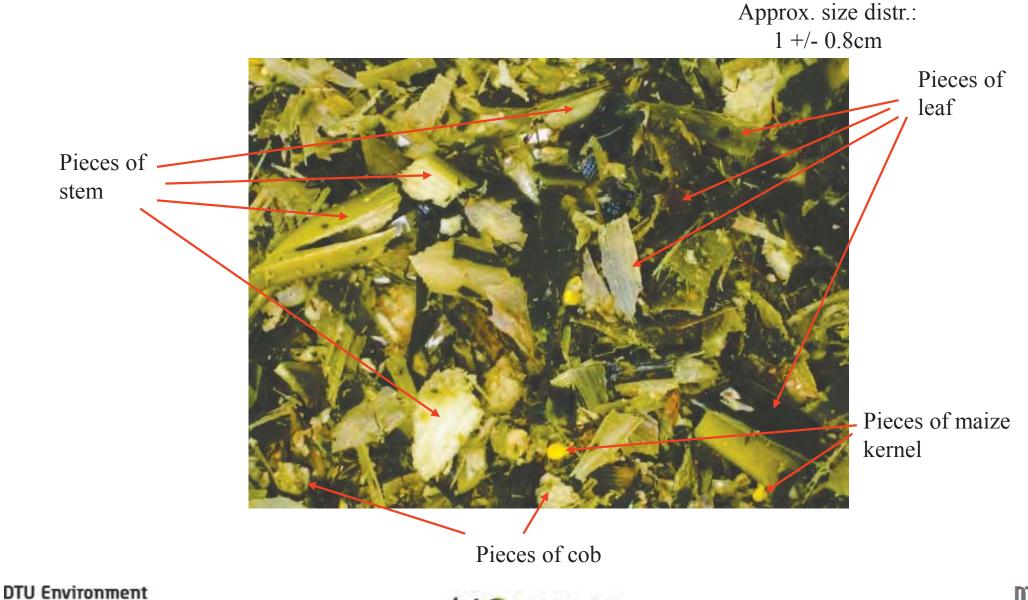
Irini Angelidaki

Præsentation 7. Maj 2013 Restabioasse fra Landbrug og Naturarealer til Biogasproduktion

DTU Environment Department of Environmental Engineering

Biomasses relevant for DK

- Manure Today around 5-6% is used!
- The goal is to use 50% by year 2020
- Industrial wastes are very popular but limited
- Agricultural residues
 - Straw
 - Beet-tops
 - Garden-park wastes
 - Sea weed
- Energy crops
 - Maize
 - Grass
 - Beets



Substrate handling

Biomass sources

Plant material (99% of the worlds annual production of organic matter is plants, only 1% is of animal origin)

- Energy crops (special crops cultivated for energy production purposes
- Agricultural residues

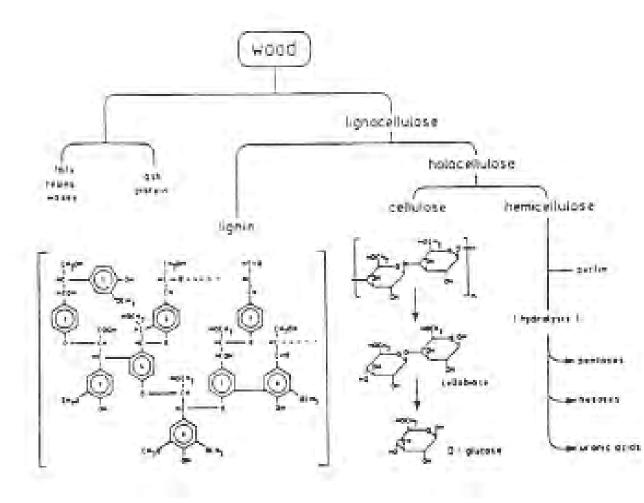
Organic matter in residue and wastes

Cellulose:

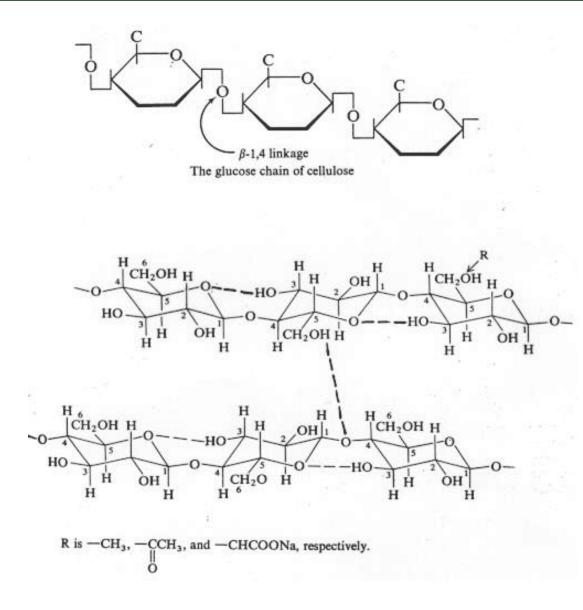
unbranched polymer of glucose

Hemicellulose:

branched polymer of various sugar units (*e.g.* xylose, mannose or glucose)


• Lignin:

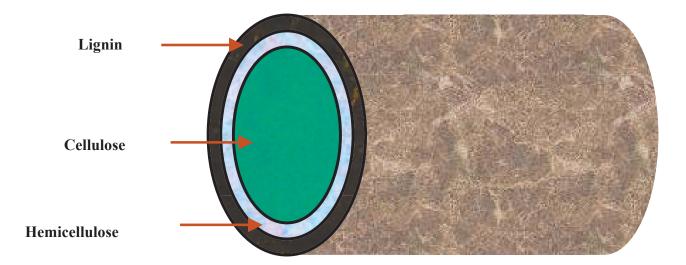
complex, cross-linked and 3-D aromatic polymer of phenylpropanoid

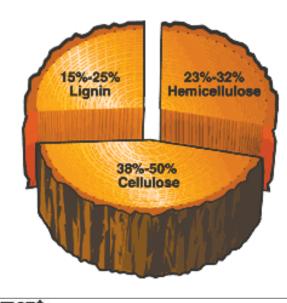

DTU Environment

♦ू♦

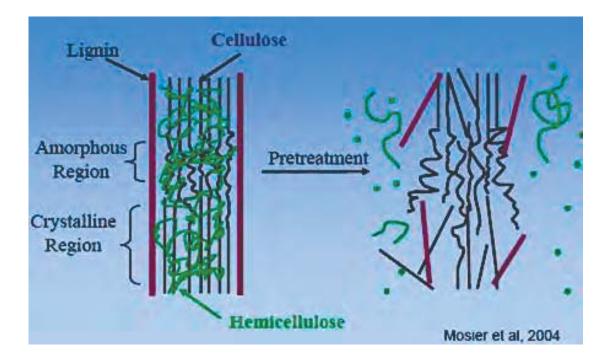
Chemical structure of cellulose

DTU Environment


 \diamond



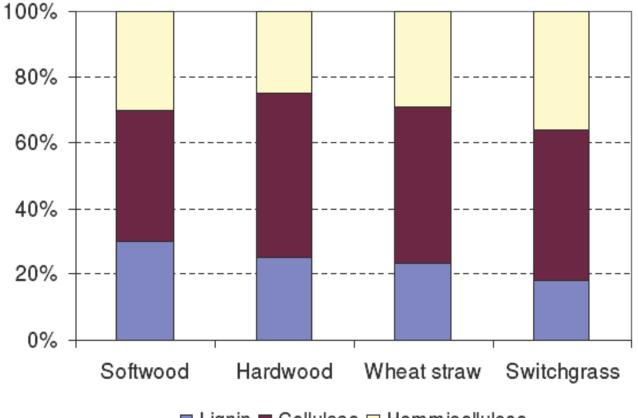
Structure of lignocellulosic material



Pretreatment

- To increase the surface area and porosity
- Reduce the crystallinity of cellulose
- To disrupt the heterogeneous structure of Lignocellulose

Effect of pretreatment on the Lignocellulosic Complex


DTU Environment

Lignocellulose composition of biomass

Lignin Cellulose Hemmicellulose

DTU Environment

 \diamond

Composition of various lignocellulosic biomasses

Sugar beet 22 59 ^b 2 5 2 pulp Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11		Cellulose (%) *	Hemicellu- lose (%) *	Lignin (%) *	Mannan (%) ^a	Galactan (%)*	Xylan (%) ^a	Araban (%) [*]
aspen43.216.02.20.515.1birch40.719.11.70.720.0White oak43.623.22.90.418.0Willow33.123.31.61.410.3Yellow49.918.14.71.217.7popularSoftwaod $ -$ Spruce41.625.711.52.04.7White cedar41.030.78.01.410.0Agricultural $ -$ waste $ -$ Bagasse38.034.011.0 $ -$ Carnstalk33.532.611.00 0.8 18.0Corn cob3244.312.925.0 $-$ Sugar beet22 59^b 2 -5 2pulp $ -$ Wheat straw $ -$ Municipal $ -$ Waste $ -$	Hardwood							
bich 40.7 19.1 1.7 0.7 20.0 White oak 43.6 23.2 2.9 0.4 18.0 Willow 33.1 23.3 1.6 1.4 10.3 Yellow 49.9 18.1 4.7 1.2 17.7 popular Softwood pine 42.4 24.7 11.8 1.9 4.7 spruce 41.6 25.7 11.5 2.0 4.7 White cedar 41.0 30.7 8.0 1.4 10.0 Agricultural waste Bagasse 38.0 34.0 11.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59^b 2 5 2 pulp Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11	alder	40.5		20.8	1.5	0.8	16.1	
White oak 43.6 23.2 2.9 0.4 18.0 Willow 33.1 23.3 1.6 1.4 10.3 Yellow 49.9 18.1 4.7 1.2 17.7 popularSoftwood 24.7 11.8 1.9 4.7 spruce 41.6 25.7 11.5 2.0 4.7 white cedar 41.0 30.7 8.0 1.4 10.0 Agriculturalwaste 23.2 25.0 25.0 Bagasse 38.0 34.0 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 25.0 Sugar beet 22 59^b 2 5 2 pulp 34.0 27.6 18.0 0 0.7 18.5 Others 34.0 27.6 18.0 0 0.7 18.5 Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Waste 36.0 11.0 10 30.7 30.7 30.7	aspen	43.2		16.0	2.2	0.5	15.1	
Willow 33.1 23.3 1.6 1.4 10.3 Yellow 49.9 18.1 4.7 1.2 17.7 popularSoftwoodSoftwood 24.7 11.8 1.9 4.7 pine 42.4 24.7 11.8 1.9 4.7 spruce 41.6 25.7 11.5 2.0 4.7 White cedar 41.0 30.7 8.0 1.4 10.0 Agriculturalwaste 25.7 11.5 2.0 4.7 Bagasse 38.0 34.0 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59^b 2 5 2 pulp 34.0 27.6 18.0 0 0.7 18.5 Others 34.0 27.6 18.0 0 0.7 18.5 Others 34.0 27.6 18.0 0 0.7 18.5 Waste 34.0 27.6 18.0 11 11 11	birch	40.7		19.1	1.7	0.7	20.0	
Yellow49.918.14.71.217.7popularSoftwoodpine42.424.711.81.94.7spruce41.625.711.52.04.7White cedar41.030.78.01.410.0AgriculturalwasteBagasse38.034.011.01.410.0Carnstalk33.532.611.000.818.0Corn cob3244.312.925.025.0Sugar beet2259 ^b 252pulp92522Wheat straw34.027.618.000.718.5Others761311waste1111waste131111111111Waste161311111111Waste131111111111Waste131111111111	White oak	43.6		23.2	2.9	0.4	18.0	2.4
popular Softwoodpine 42.4 24.7 11.8 1.9 4.7 spruce 41.6 25.7 11.5 2.0 4.7 White cedar 41.0 30.7 8.0 1.4 10.0 AgriculturalwasteBagasse 38.0 34.0 11.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59^b 2 5 2 pulp $9b^b$ 2 5 2 Wheat straw 34.0 27.6 18.0 0 0.7 18.5 OthersMunicipal 76 13 11 waste	Willow	33.1		23.3	1.6	1.4	10.3	
Softwoodpine 42.4 24.7 11.8 1.9 4.7 spruce 41.6 25.7 11.5 2.0 4.7 White cedar 41.0 30.7 8.0 1.4 10.0 AgriculturalwasteBagasse 38.0 34.0 11.0 0 0.8 18.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59^b 2 5 2 pulp $9bbble$ $9bbble$ $9bbble$ 11.0 0 0.7 18.5 Others 34.0 27.6 18.0 0 0.7 18.5 Wheat straw 34.0 27.6 18.0 0 0.7 18.5	Yellow	49.9		18.1	4.7	1.2	17.7	1.8
pine 42.4 24.7 11.8 1.9 4.7 spruce 41.6 25.7 11.5 2.0 4.7 White cedar 41.0 30.7 8.0 1.4 10.0 Agricultural wasteBagasse 38.0 34.0 11.0 0 0.8 18.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59^b 2 5 2 pulp 27.6 18.0 0 0.7 18.5 Others 76 13 11 11 11 waste 76 13 11 11 11								
spruce 41.6 25.7 11.5 2.0 4.7 White cedar 41.0 30.7 8.0 1.4 10.0 AgriculturalwasteBagasse 38.0 34.0 11.0 0 0.8 18.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59^b 2 5 2 pulp 27.6 18.0 0 0.7 18.5 OthersMunicipal 76 13 11 waste	=r	42.4		24.7	11.8	1.9	4.7	1.6
White cedar 41.0 30.7 8.0 1.4 10.0 Agricultural waste Bagasse 38.0 34.0 11.0 0 0.8 18.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 25.0 Sugar beet 22 59 ^b 2 5 2 pulp Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11 waste 44.3 10.0		41.6		25.7	11.5	2.0	4.7	
Agricultural waste Bagasse 38.0 34.0 11.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 25.0 Sugar beet 22 59 ^b 2 5 2 pulp 9 9 18.0 0 0.7 18.5 Others 9 13 11 11 11								1.2
Bagasse 38.0 34.0 11.0 Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 25.0 Sugar beet 22 59 ^b 2 5 2 pulp 34.0 27.6 18.0 0 0.7 18.5 Others 34.0 27.6 18.0 0 0.7 18.5 Winicipal 76 13 11 11 11								
Carnstalk 33.5 32.6 11.0 0 0.8 18.0 Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59 ^b 2 5 2 pulp 34.0 27.6 18.0 0 0.7 18.5 Others 76 13 11		78.0	24.0	11.0				
Corn cob 32 44.3 12.9 25.0 Sugar beet 22 59 ^b 2 5 2 pulp Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11	201				0	0.8	19.0	2.2
Sugar beet 22 59 ^b 2 5 2 pulp Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11					0	v.o		3.0
pulp Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11 waste						5		21
Wheat straw 34.0 27.6 18.0 0 0.7 18.5 Others Municipal 76 13 11 waste		<u>44</u>	27	-		5	<u>é</u>	41
Others Municipal 76 13 11 waste		34.0	27.6	18.0	0	0.7	18 <	1.6
Municipal 76 13 11 waste		34.0	2.7.77	10.37	v	W.7	10.2	1.4
waste		76	13	11				
		10	E.2*					
Energy grass 28.0 16.5 53 1.0 9.7		28.0	16.5	52		1.0	07	2.7

^a The amount is given in % w w on dry matter basis
^b Includes both the hemicellulose and the pectin

DTU Environment

Purpose of pretreatment

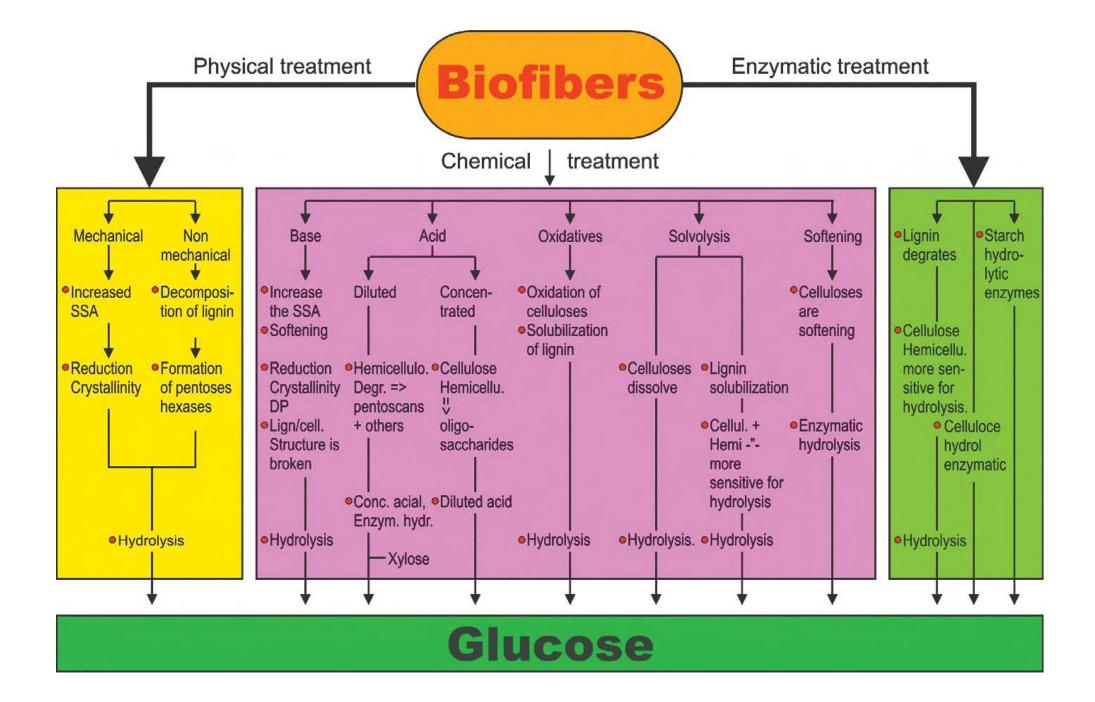
Un-treated biomass is rigged and smooth

Polymers inaccessible for hydrolytic enzymes

Cellulose, hemicellulose and lignin form a complex matrix

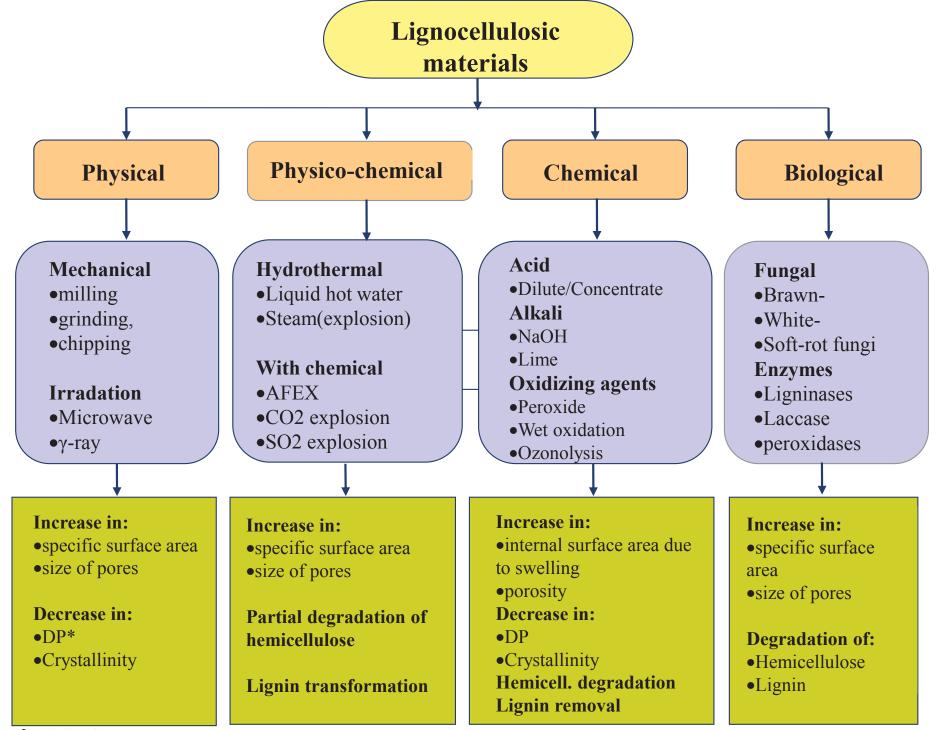
Pretreatment should:

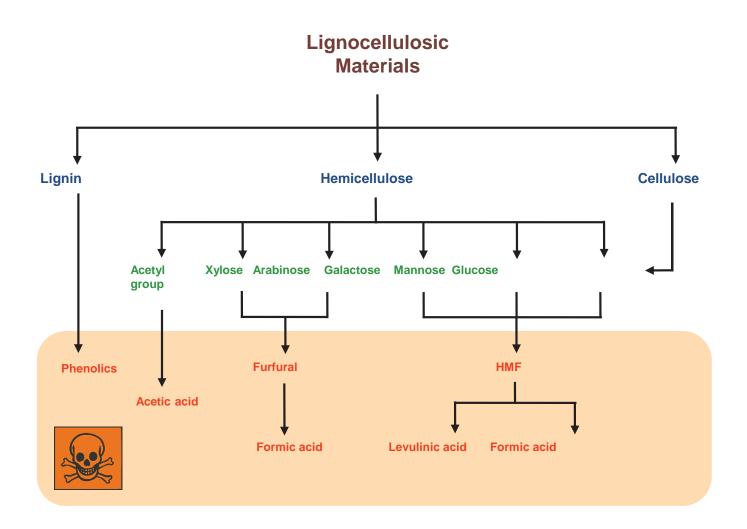
Increase of the surface area, better access of enzymes to carbohydrates


Decrease cellulose crystallinity

Degrade/disrupt/soften lignin structure

Leave most of cellulose intact



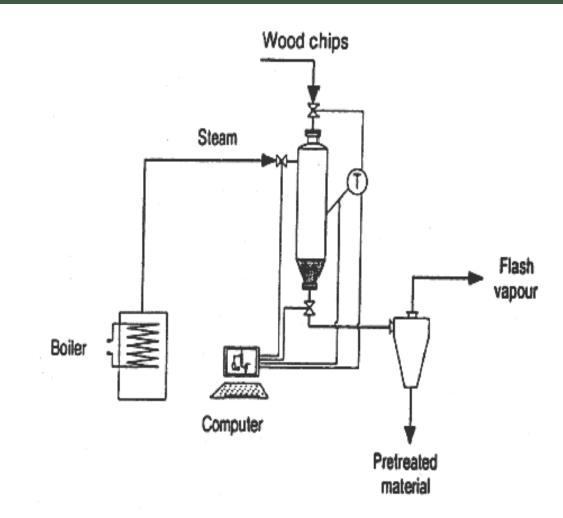


Enzymatic pretreatment

Enzymes for hydrolysis of the pretreated material

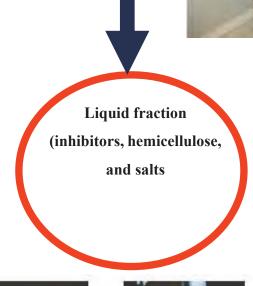
Examples of enzymes - Cellic® CTec2 (Novozymes); Accelerator (Dupont)

Mixing of enzymes with the pre-treated material

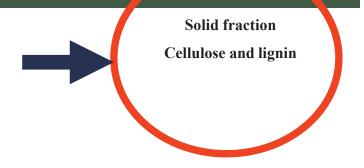

Example: The most common methods and corresponding conditions for pretreatment of wheat straw

Pretreatment technology	Procedure/Chemicals	Temp. (°C)	Reaction times	Solid loading (wt.%)
Dilute acid	0.5–5.0% H ₂ SO ₄	120–180	5–60 min	5–30
Steam Explosion	saturated steam	160–230	5-30 min	<30
Alkaline peroxide	>0.25 g H ₂ O ₂ /g biomass, pH=11.5	25-35	3-24 h	<10
Wet oxidation (Alkaline)	6-12 bar O ₂ pressure (+ 0.11 g Na ₂ CO ₃ /g biomass)	185-195	10-15 min	6
Lime	0.05–0.15 g Ca(OH) ₂ /g biomass	85-135 50-65	1–3 h 24 h	5–20

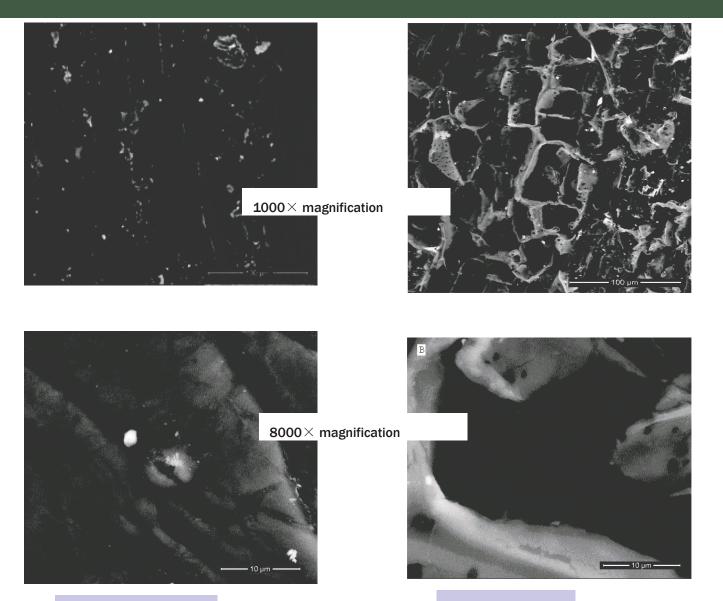
Steam explosion



- 200 g wheat straw
- 200°C
 - 20 bar
- 5 minutes
- Rapid pressure release


Hydrothermal pre-treatment of rapeseed straw

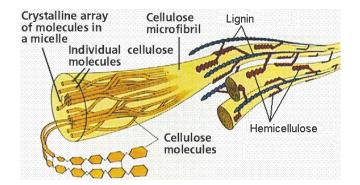
Liquid fraction (hydr	olysate)	Solid fraction		
Characteristics	Value ^a	Characteristics	Value ^b	
Glucose	1.5	Cellulose	53.9	
Xylose	11.1	Xylan	8.8	
Arabinose	1.5	Arabinan	0.3	
Total hemicellulose	12.6	Total Hemicellulose	9.1	
TS(g/l)	27.9	Klason lignin	24.2	
VS(g/l)	25.6	Ash	2.9	
		Residual	9.9	



Physical effect of hydrothermal pretreatment

DTU Environment Department of Environmental Engineering Treated

Hydrothermal pretreatment of rapeseed straw


- Temperature $(160, 180, 190 ^{\circ}C)$
- Reaction time (0, 5, 7.5, **10**, 15 min)
- Solid content (5, 10, 15, **20**, 30, 50%)
- Use of sulphuric acid as catalyst (0, 0.5, 1%)
- Mixing time of sulfuric acid

Maximization of sugar release (hemicellulose solubilization) Minimization of inhibitors formation (furfural, HMF) Maximization of ethanol production 70% Ethanol yield based on the solid phase alone

For more details: Lu X., Zhang Y., and Angelidaki (2009). Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. *Bioresource Technol*. 100(23)3048-3053.

Pretreatments applied on digested manure for biogas production

Physical Mechanical Decompression explosion Thermal Chemical NaOH ■ NH₄OH Base combinations Microbiologic Enzymatic

Effect of the different treatments on the biodegradability achieved from cattle manure

Treatment		Biodegr. incr. (%)
Maceration	< 0.35 mm	20
Maceration	2 mm	16
Decompression explosion		17
NaOH	20 g/kgVS	13
NaOH	40 g/kgVS	20
NH ₄ OH	< 20 g/kgVS	0
NH ₄ OH	40 g/kgVS	_
NaOH:KOH:Ca(OH) ₂	40 g/kgVS	20

Common pretreatments

Dilute acid (high temp. + pressure, short time) Removes hemicellulose, alters lignin structure

Alkaline (low temp, no pressure, long time) Removes lignin and some hemicellulose

Oxidative (H2O2, low temp, no pressure, long time)

Removes lignin and hemicellulose

Jerusalem artichoke

Lignocellulosic biomass

Above ground

Root vegetables (tubers)

Underground Up to 20% w.w. is sugars

Grow up to 3m tall

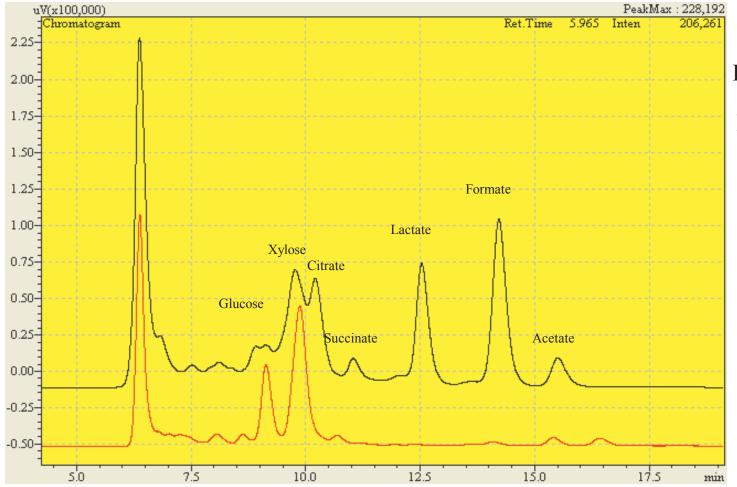
- Cultivated by SLU at Alnarp, Sweden
- Plants harvested on three occasions
 - September, October and December

Example of different pretreatment for biogas production

Using strong oxidizer (e.g. H2O2)

Up to 80% lignin degradation into many products Aromatic aldehydes Carboxylic acids Could favor anaerobic digestion of lignin Sulfuric acid potentially <u>causes problems</u>

Sulfate reducing bacteria compete w. methanogenes


Solid material post pretreatment

Lignin degradation products in liquid

Black = H2O2 hydrolysate

Red = H2SO4 hydrolysate

DTU Environment

Pretreatments have the aim in releasing the sugars from the lignocellulosic structure

Pretreatment is not always needed

Enzymes are existing in a biogas reactor

The pretreatments should be cheap and simple

